

WP5

User engagement training and outreach

D5.1

Presentation material to introduce EBS beamlines

Expected date: 14 Jul 2021

PROJECT DETAILS

PROJECT ACRONYM PR	PROJECT TITLE						
STREAMLINE be	Sustainable research at micro and nano X-ray beamlines THEME						
lo	H2020-INFRADEV-2018-2020 Development and long-term sustainability of new pan-European research infrastructures						
START DATE							
15/11/2019							
DELIVERABLE DETAILS							
WORK PACKAGE ID	EXPECTED DATE						
WP5	14/07/21						
WORK PACKAGE TITLE	DELIVERABLE TITLE						
User engagement training and outreach	Presentation material to introduce EBS beamlines						
WORK PACKAGE LEADER	DELIVERABLE DESCRIPTION						
Marine COTTE	Presentation material to introduce EBS beamlines -						
DELIVERABLE ID	Task 5.1						
D5.1	PERSON RESPONSIBLE FOR THE						
	DELIVERABLE						
	Gary ADMANS						
NATURE							
□ R- Report □ P - Prototype □ D - Demonstrator □ O - Other							
DISSEMINATION LEVEL							
☑ P - Public							
☐ PP- Restricted to other programme participants & EC: Click here to enter text							
□ RE – Restricted to a group Click here to enter text							
□ CO – Confidential, only for member	s of the consortium						
DEDODT DETAIL C							
REPORT DETAILS							
VERSION	DATE NUMBER OF PAGES						
DELIVERABLE REPORT AUTHOR(S)	13/08/21 18 FOR MORE INFO PLEASE CONTACT						
STATUS							
□ Template	□ Draft						
⊠ Final	☐ Released to the EC						
-							

Project coordinator: Carsten Detlefs

MAIN TECHNIQUES

- Dark field x-ray microscopy
- Section topography
- Strain mapping

BEAMLINE SPECIFICATIONS

- Energy range 12-60 keV
- Pink and monochromatic beam
- Spatial resolution ~100 nm
- Multi-scale capability

EBS & REFURBISHMENT IMPROVEMENTS

- Dedicated beamline fully optimized for dark field x-ray microscopy
- Improved photon flux for faster acquisition and better signal/noise ratio
- Integration with 3DXRD

2020 2021 2022 2023 2024

USM on prototype instrument at ID06 Technical design report

Implementation

USM

ID03: HARD X-RAY MICROSCOPY BEAMLINE

Metallurgy

- Pattern formation
- Materials fatigue
- Recovery and recrystallization

Functional materials

- Strain at grain boundaries
- Formation of domain patterns
- Dynamics of domain switching

Ceramics

toughening

twinning

3D strain maps with 100 nm spatial resolution

Biominerals

Microstructure

MAIN TECHNIQUES

- Synchrotron Mössbauer source
- Nuclear forward scattering
- Nuclear inelastic scattering

BEAMLINE SPECIFICATIONS

- Energy range: 7 90 keV
- Energy resolution: 3.7 neV 2 meV
- Beam size: $2 \times 9 \mu m^2$ (present) down to $0.2 \times 0.2 \, \mu m^2$ (new Nanoscope)

Improving resolution (here – energy resolution, but also spatial one) by orders of magnitude, but keeping the same flux:

High-resolution monochromator (2007)

• Energy resolution: ~500 μeV

• Flux: ~10¹⁰ photons/sec

High-resolution spectrograph (2022)

• Energy resolution: ~50 μeV

• Flux: ~10¹⁰ photons/sec

EBS & REFURBISHMENT IMPROVEMENTS

- Smaller beam size
- Higher energy resolution
- Higher stability in space and in energy
- Higher flux

2017	2018	2019	2020	2021	2022	2023	2024
Test of							

Test user the concept experiment

Design optimization

New instrument + USM on ID18

Transfer to **ID14**

ESRF

ID14: NUCLEAR RESONANCE SCATTERING

Geoscience and Exoplanets

- Identification of chemical phases
- Electronic and magnetic transitions
- Sound velocities, elastic moduli, thermodynamics and heat conductivity

Magnetism at Megabars

Magnetic states

- Magnetic transitions
- Transition from ferromagnetism to superconductivity

Superconductivity

- Superconductivity at high pressure
- Visualization of the vortex structure

Electronic properties, magnetism and atomic dynamics at extreme conditions

No-man's land

- Entering "No-man's land" between meV and neV energy transfer
- Anharmonicity, phonon life-time

Glass transition

- Dynamical heterogeneities
- Time and length scale

ID18: COHERENT X-RAYS DYNAMICS AND IMAGING

MAIN TECHNIQUES

- X-ray photon correlation spectroscopy
- Coherent diffraction Imaging
- Ptychography

BEAMLINE SPECIFICATIONS

- Energy range: 6-35 keV
- Pink beam to highly monochromatic
- Variable sample detector-distance (2 to 25m)
- Tunable beamsize (1 to 20 µm)

EBS & REFURBISHMENT IMPROVEMENTS

- New building and optics
- Higher flux
- Tunable spotsize
- Ptychography setup
- Faster detectors

2021 2022 2023 2024 2025

Technical Design

Calls for Tender Report

Civil construction

Installation

ID18: COHERENT X-RAYS DYNAMICS AND IMAGING

Dynamics of glassy state

- How do glasses age?
- How do glasses rearrange ?

Physics of light

 Investigating fundamental quantum & non-linear optics processes (SHG, DFG)

Dynamics in crowded systems

 How proteins move in crowded environment (e.g. cells)?

Mesoscale Structure and Dynamics

High resolution 3D imaging

- How systems are organized in the mesoscale?
- How manufacturing at sub micron can be optimized?

Bioimaging

- Growth of mesoscale structures
- How are building blocks of life connected?

Project coordinator: Paul Tafforeau

MAIN TECHNIQUES

- Hierarchical tomography
- Propagation phase-contrast imaging

BEAMLINE SPECIFICATIONS

- Energy range:25-350 keV (polychromatic)
- 220m long beamline, up to 38m for propagation phase-contrast
- Sample size up to 2.5m and 300 kg
- High level of automation and high throughput

EBS & REFURBISHMENT IMPROVEMENTS

- Smallest possible X-ray source of the EBS
- Beam of 35cm with highest coherence worldwide for high-energy X-ray imaging.
- Large resolution range (0.7 200 μm)

2018

2019

2020

2021

2022

Building construction OH1 construction

Sample stage development and installation

EH1 construction
X-ray optics development and installation

Commissioning and friendly users

BM18: HIERARCHICAL PHASE-CONTRAST TOMOGRAPHY

Biomedical imaging

- A new scale in human body knowledge
- Understanding effects of diseases

Natural and cultural heritage

- Understanding the evolution of life on earth
- Non-invasive structural study of archaeological specimens and art pieces

Geology

- Origin of earthquakes
- Mechanisms of volcanoes
- Climate change

erc

High sensitivity phasecontrast tomography in large and complex samples

Industrial applications

- Testing high-value objects
- Analysis of 3D structures of industrial products
- Industrial processes

Material sciences

- Non-destructive control of large devices (batteries, complex mechanical parts)
- Additive manufacturing (in-situ and ex-situ)

MAIN TECHNIQUES

- Micro X-ray fluorescence 2D mapping
- Micro X-ray absorption spectroscopy
- Hyperspectral mapping

BEAMLINE SPECIFICATIONS

- Energy range:2-11keV
- Minimum beam size: 0.3×0.3μm² (present)
 down to 0.1×0.1μm² (new nano-scope)
- In-vacuum + cryo stage
- User friendliness

EBS & REFURBISHMENT IMPROVEMENTS

- Smaller, square and more stable beam
- Higher flux
- Faster acquisitions
- Better XRF collection
- Better cryo-preservation

Scanning X-ray microscope (2008)

- 1 KB (beam down to 0.3×0.3µm²)
- 2 single element XRF detectors
- Graphical user interface

Scanning X-ray nanoscope (2022)

- 2 KB (beam down to 0.1×0.1μm²)
- 2 5-element XRF detectors
- Easy switch room temperature/ cryo
- Sample orthogonal to the beam

2018 2019 2020 2021 2022

New primary mirrors refurbished optics hutches

New DCM

EBS shutdown

USM

Infrastructure works

USM

New nanoscope

ID21: MICRO X-RAY SPECTROSCOPY

Cultural Heritage

- What are the masters' secrets?
- Why and how do artworks degrade?

Manufactured materials

- Efficiency and stability of manufactured materials
- Chemical reactions at boundaries in electrodes, catalysts and microelectronics

Environmental science

- Positive and negative impacts of materials in the environment
- Metal accumulation in plants

Identification and location of chemical markers in complex materials

Earth and planetary sciences

- Chemical signature
 (element composition,
 trace elements,
 speciation) of geological
 processes
- Paleoclimate

Health

- Interactions of manufactured materials (drugs, implants, tattoos, etc.) with living systems
- Chemical modifications induced by neurodegenerative diseases

Project coordinator: Olivier Mathon

MAIN TECHNIQUES

- X-ray Absorption Spectroscopy
- Micro-XAS / Micro-XES mapping
- Complementary techniques: XRD, DRIFTS, MS, UV-Vis ...

BEAMLINE SPECIFICATIONS

- ID24-ED energy Dispersive branch 5-25keV
- ID24-DCM energy scanning branch 5-45keV
- Focal spot down to 0.3x0.3 μm²
- Flux up to 10¹⁴ ph./s

EBS & REFURBISHMENT IMPROVEMENTS

- Higher brilliance, smaller focal spot
- Fast acquisition, continuous scan
- High Power Laser for dynamic compression
- LH-DAC setup for static compression
- Micro-EXAFS/Micro-XES setup
- Operando chemistry facilities

ID24: HIGH BRILLIANCE X-RAY ABSORPTION SPECTROSCOPY BEAMLINE

Laser shock science

- Warm Dense Matter
- Planets and Inertial Confinement Fusion
- Dynamic behavior of matter

Structure of novel materials

- Batteries and fuel cells
- Nanoparticles
- Gas sensors and separators
- Drugs

Environmental science

- Geo-resources
- Biogeochemical processes
- Impact of human activity on our environment

Physics and chemistry of complex materials under relevant conditions

Matter at extremes

- Planetary interiors
- Condensed matter physics
- Material sciences
- Materials under high pulsed magnetic field

In-situ and *operando* chemistry

- Catalysis
- Synthesis
- Electrochemistry
- Photochemistry

ID27: EXTREME CONDITIONS BEAMLINE

Project coordinator: Mohamed Mezouar

MAIN TECHNIQUES

- Micro X-ray diffraction
- Micro X-ray fluorescence
- X-ray imaging

BEAMLINE SPECIFICATIONS

- Energy range:15-65keV
- Minimum beam size: 0.3×0.3μm²
- State-of-the art Eiger 9M XRD detector
- High P and T (P> 5 Mbar, T> 5000 K using Laser and resistive heating techniques)
- Low T (down to 5 K)
- Low dilution level (~1 ppm)

EBS & REFURBISHMENT IMPROVEMENTS

- Smaller and more stable beam
- Higher flux (x1000 in pink beam mode)
- Faster acquisitions (for XRD and XRI)
- Higher dynamic range (for XRD)

Technical Design Report

Detailed Beamline Design

Infrastructure works

USM

ID27: EXTREME CONDITIONS BEAMLINE

High Density Physics

- Search for room temperature superconductivity
- Structure of metallic hydrogen

Materials under Extreme P&T

- Synthesis of superhard materials
- Materials under high stress

High Pressure Chemistry

- Emergence of structural complexity
- New high pressure compounds

In situ studies of materials subjected to extreme P,T conditions

Earth and planetary sciences

- Structure and dynamics of deep Earth materials
- Understanding large scale geological phenomena (volcanism, plate tectonics)

Soft and biological matter under pressure

- Polymerization
- Protein conformation

ID29: SERIAL MACROMOLECULAR CRYSTALLOGRAPHY

Project coordinator: Daniele de Sanctis

MAIN TECHNIQUES

- Serial Crystallography X-ray diffraction
- Time resolved Crystallography
- Room temperature Crystallography

BEAMLINE SPECIFICATIONS

- Energy range 10-20keV with 1% bandwidth
- Minimum beamsize 0.6 x 0.4μm²
- 10¹⁵ 10¹⁶ ph/s flux
- Microsecond-to-millisecond time resolution

EBS & REFURBISHMENT IMPROVEMENTS

- Higher flux density and time resolution
- Diffraction from submicron samples
- Last generation of high frame rate integrating detector

2018

2019

2020

2021

2022

Technical Design

EBS Shutdown Procurement

Infrastructure Instrumentation

Commissioning

ID29: SERIAL MACROMOLECULAR CRYSTALLOGRAPHY

Drug design

- Exploit room temperature fragment screening
- Identify time dependent structure: ligand complexes

Biofuel

- Characterize and optimize biochemical processes for production new carburants
- Exploit novel sources for bioenergies

Enzymology

- Study enzymatic reaction in crystals
- Enzyme design and repurposing by synthetic biology

Serial and Time resolved Crystallography

Photobiology

- Study light activatable biological processes
- Investigate light dependent biochemical reaction

Bioremediation

- Study and engineering of macromolecular complexes involved in bioremediation
- Develop enzymatic processes for plastic waste treatment

